
Rerandomization to Improve Covariate

Balance by Minimizing the MSE of a

Treatment E�ect Estimator

A Treatment Assignment Method for One and Multiple

Treatment Arms

Sebastian O. Schneider*

Max Planck Institute for Research on Collective Goods, Bonn

and

Martin Schlather

Department of Mathematics, University of Mannheim

November 30, 2021
Click here to get the newest version of this paper.

Abstract

We present a new approach to treatment assignment in (�eld) experiments

for the case of one or multiple treatment groups. This approach, which we call

the minimizing Mean Squared Error (min MSE) approach, uses sample char-

acteristics to obtain balanced treatment groups. Compared to other methods,

the min MSE procedure is attrition tolerant, o�ers greater �exibility, is very

fast, it can be conveniently implemented and balances di�erent moments of the

distribution of the treatment groups. Additionally, it has a clear theoretical

foundation, works without parameters being speci�ed by the researcher and

allows multiple treatments. The information used for treatment assignment

can be multivariate, discrete or continuous, and may consist of any number of

variables. In this paper, we derive the underlying theoretical selection criteria,

which we then apply to various scenarios and datasets. Our proposed method

performs better than, or comparably to, competing approaches, such as match-

ing, in most of the commonly used measures of balance. We provide Stata, R

and Python implementations of our method.

*sschneider@coll.mpg.de
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1 Introduction

The current debate about replicability of scienti�c �ndings from experiments (Open

Science Collaboration, 2015; Camerer et al., 2016) shows the importance of practices

that improve the validity of experimental outcomes. One such practice is conducting

randomization or treatment assignment in an appropriate way. The more similar the

treatment groups, the higher is the precision of the experiment, that is: the closer is

the outcome of a single experiment to the truth (Fisher, 1935). Thus, appropriate

treatment assignment is directly linked to replicability. Since there is no consent

on how treatment assignment should be carried out (Bruhn and McKenzie, 2009),

several competing and complementary strategies to account for group characteristics

in treatment assignment are widely used. Also from a theoretical perspective, a clear

answer is missing; see e.g. Imbens (2011) for a brief discussion.

One method is pure randomization, which can be considered, depending on the

transparency of the actual implementation, as the fairest method for treatment al-

location, and is certainly the fastest. A drawback is, that imbalances appear by

chance and can lead to undesired false alarms. Furthermore, it is not guaranteed,

especially when the sample size is small, that all characteristics of a variable appear

in all experimental groups at all and additionally with the same frequencies; this is a

problem when subgroup analysis is desired to study heterogeneous treatment e�ects.

Strati�cation or blocking goes back to Fisher (1935). The idea is to build sub-

groups according to observable characteristics and to randomize within those sub-

groups. This method achieves exact balance for binary variables and improves the

balance in comparison to purely random treatment assignment for other types of vari-

ables. The main advantage of strati�cation is to ensure the possibility of subgroup

analysis while ideally increasing the e�ciency of the analysis. The time needed to

conduct treatment assignment using strati�cation depends on the actual implemen-

2



tation, but in simple cases, e.g. with two dichotomous variables, it takes only slightly

longer than pure randomization. A disadvantage is that only a very limited number

of variables can be balanced, since the number of required strata is the product of

the number of parameter values and each stratum should contain several observa-

tions. Furthermore, continuous variables have to be discretized and are never really

balanced with this approach. Additional problems arise when the number of partic-

ipants is not divisible by the number of subgroups. Although solutions to this have

been suggested, a simple implementation is no longer possible. Moreover, building

the strata requires expertise on both the data and the question under investigation.

Pairwise matching is often seen as the limit case of strati�cation, when the sub-

groups consist of only two individuals. The subgroups, called pairs in the case of

matching, have to be created such that the two individuals are similar, where the

similarity can be measured e.g. with the so-called Mahalanobis distance of the co-

variate vectors of the two individuals. Two types of algorithms are commonly used:

the so-called greedy algorithm (Imai et al., 2009a) and an `optimal matching' algo-

rithm (Greevy et al., 2004; Lu et al., 2011). Note that this is a di�erent task to

the one performed for matching in observational studies: Finding pairs when groups

have already been formed is far less demanding, also from a computational aspect.

Matching can be realized with many possible continuous variables and thus elimi-

nates some of the shortcomings of strati�cation. Subgroup analysis, however, is not

ensured in cases, where balance on a certain variable could not be achieved, which,

however, should not be the case in moderate sized samples and a moderate amount of

variables to balance. It is arguably considered to be fair and the design is relatively

clear and easy to explain. The biggest advantage of the `optimal matching' algorithm

is that the distribution of covariates in the treatment and the control group become

as similar as possible. This, however, comes at the cost of analytical di�culties when

3



estimating the variance and the standard error of the treatment e�ect (e.g. Imbens,

2011; Abadie and Imbens, 2006; Klar and Donner, 1997). Limitations arise when

attrition occurs, i.e. when, for some units, the outcome remains unobserved. Imai

et al. (2009a) note that an advantage of matching is that if a unit drops out, its

pair can also be taken out of the experiment while the remaining sample still re-

mains balanced. This problem becomes severe in small samples or when performing

randomization at the cluster level: For every unit, possibly consisting of many indi-

viduals, dropping out of the experiment, its pair should also be removed, which lowers

the sample size and power and can be of major concern. Furthermore, matching can

only be performed when the number of units is even. Finally, the matching approach

implemented by Bruhn and McKenzie (2009), needed several days to conduct treat-

ment assignment with a sample size of 300 units, so this approach is inappropriate if

time is a limiting factor. Yet, the software implementation of the `optimal matching'

algorithm in the R package nbpMatching (Lu et al., 2011) is considerably faster.

Rerandomization methods try to avoid the above mentioned theoretical or prac-

tical limitations. The basic idea is to choose the best assignment, according to a

speci�ed evaluation criteria. Due the complexity of the problem, a random treat-

ment assignment is picked in a certain way, evaluateed with respect to the crite-

ria and rerandomized either a certain number of times or until the criteria meets

some prespeci�ed condition. Sometimes, subjective judgment is also used (Bruhn

and McKenzie, 2009). All of the rerandomization methods discussed here are able

to consider continuous, categorial and binary variables in a theoretically unlimited

number. However, we are aware of only one rerandomization approach that relies

on a theoretical derivation of the statistical threshold to stop the rerandomization

(Morgan and Rubin, 2012). This threshold, as well as the alternative ad-hoc thresh-

olds, such as picking the maximum t-value minimizing treatment group assignment,
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focuses only on the mean value of one or several covariates and ignores other charac-

teristics of the distributions of the variables that might be balanced. Yet, all of those

rerandomization methods aim at balancing group means, and with the exception of

Morgan and Rubin (2012), fail to consider dependencies of the di�erent variables

included in treatment assignment. However, in their approach, the dependency be-

tween variables is constant accross treatment assignments. Irrespectively of these

limitation, we are unaware of any software implementation.

Kasy (2016) applies a decision theoretical, Bayesian model to analyze the problem

of treatment assignment. To that end, he derives the posterior mean squared error

(MSE) of an estimator for the conditional average treatment e�ect of interest as

a function of treatment assignment and argues that randomization never increases

precision compared to an optimal, deterministic treatment assignment. Kasy (2016)

discusses several possibilities to implement such a (binary) treatment assignment

procedure and provides Matlab code for their implementation; one such possibility

is his Bayesian linear model, where for an application, the researcher has to pick

a mean vector and a covariance matrix for the distribution of the estimator in a

model for the potential outcomes. Since, in addition, a guess for the coe�cient of

determination R2 of such a linear regression model must be speci�ed, the approach

becomes impractical in its generality. Of course, one could use a �at prior, inducing

nearly no prior information. In this case, however, one might also resign from using

prior information, as it simpli�es the objective function and consequently the method

considerably.

To conclude, to date there is to our knowledge no solution available to perform

randomization with multiple treatment arms and multiple possibly continuous vari-

ables. Also in the case when only one treatment is to be assigned but attrition might

be of a concern, researchers might be unsatis�ed with the matching approach.
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2 The min MSE Treatment Assignment

In the spirit of Kasy (2016), our approach combines the mean squared errors of the

estimators for the conditional average treatment e�ects within a linear model that

is a function of treatment assignment. Moreover, due to developing the approach in

a frequentist setting, we increase the applicability of the statistic for treatment as-

signment considerably: Our result works without choosing any technical parameters

while still allowing for the needed �exibility. In the treatment assignment mecha-

nism derived here, the only parameter that must be speci�ed by the researcher is

the number of treatment groups desired; other parameters, such as scaling factors

for variances, can be speci�ed, but can be left constant unless a better guess is avail-

able. The assumption of equal variances is an intuitive assumption that experienced

researchers quickly can con�rm or withdraw, and in the latter case, easily adjust by

specifying a good guess for scaling up the variance of a treatment or an outcome.

A further advantage of the frequentist setting is that the statistic establishes an

undistorted balance between treatment groups. More precisely, we show that this

statistic aims at balancing the second moments of the covariate distributions, in-

corporates dependencies between covariates and illustrate the importance of these

features. Apart from that, we interpret and implement the method as a rerandom-

ization method, which yields the possibility of randomization inference.

Finally, our method allows multiple treatments and multiple outcomes, which

both can be weighted.

2.1 Framework and Treatment E�ect

First, we de�ne the parameter we are ultimately interested in estimating: the con-

ditional average treatment e�ect. We do so by introducing the potential-outcome
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framework (Rubin, 1974, 1977). As we derive the minimizing MSE treatment as-

signment procedure for various treatment e�ects and various outcomes, we directly

extend the framework to �t our needs.

Assume, we have N participants, randomly selected for the experiment from the

population. Individual draws of a (random) variable are indicated with a subscript

i = 1, . . . , N and realizations of a random variable or vector will be denoted by the

corresponding lower-case letter.

In the experiment, an individual i is randomly assigned to one of d experimental

groups and treated with the corresponding treatment or is not treated at all if it is

assigned to the control group. Let denote this random assignment with Ai, Ai ∈

{0, . . . , d}, where 0 indicates the control group. The m-variate (realized) outcome

for individual i, denoted by Yi = (Yi,1, . . . , Yi,m)>, depends on Ai, but also on its r-

variate covariates Xi = (X1,i, . . . , Xr,i)
>, which will be modelled by a random vector.

Let X = (X1, . . . , XN).

For theoretical reasons we are interested also in the hypothetical outcomes if the

assignment would have been di�erent. The ensemble of realized and hypothetical

outcomes are called potential outcomes and are denoted by the random variables

Y p,a
i,k , where a ∈ {0, . . . , d}, k ∈ {0, . . . ,m} and i as above. Let Y

p,a
i = (Y p,a

i,1 , . . . , Y
p,a
i,m )

the m-variate potential outcome of individual i for treatment a.

Let I(a) = {i : Ai = a} = {i1, . . . , ina}, VI(a) = (Vi1 , . . . , Vina
)> if V is a vector

with components V1, . . . , VN , and VI(a) = (Vi1 , . . . , Vina
) if V is matrix with columns

V1, . . . , VN . We also use I(a) in superscript notation with the same meaning.

The realized outcome Yi of individual i can now be written by means of potential

outcomes and the treatment group assignment:

Yi =
d∑
a=0

1i∈I(a)Y
p,a
i = Y p,0

i +
d∑
a=0

(
Y p,a
i − Y p,0

i

)
1i∈I(a).
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The right-hand side of the above formula decomposes the realized outcomes for an

individual in her potential outcomes. The di�erences Y p,a
i −Y

p,0
i , which are the causal

e�ects of the treatment a, would be of great interest in any study, but can never be

observed. However, under certain conditions, we can estimate the population average

e�ect of treatment a:

τa = E
[
Y p,a
i − Y p,0

i

]
, for all a = 1, . . . , d and any i,

which is often su�cient for most research questions.

If the main interest is to study a subpopulation (e.g. the poor), or when one is

not sure whether or not the sample at hand is representative for the population,

one should focus on the conditional average treatment e�ect (Imbens, 2004). This

happens frequently in Development Economics, for instance.

De�nition 1 (Conditional Average Treatment E�ect). The conditional average treat-

ment e�ect of treatment a, a ∈ {1, . . . , d}, is de�ned as

τa(X) = (τa1 (X), . . . , τam(X)) =
1

N

N∑
i=1

E
[
Y p,a
i − Y p,0

i |Xi

]
.

For identi�cation of the conditional average treatment e�ect, further assump-

tions are needed and discussed, e.g. in Imbens (2004) or Abadie and Imbens (2006).

The most important assumption, the conditional independence assumption (some-

times called unconfoundedness assumption), means that potential outcomes are in-

dependent of the group and therefore of treatment assignment, conditional on the

covariates, i.e.,

Ai is independent of Y
p
i conditional on Xi = x

for almost every x ∈ X, where X denotes the support of Xi for any i = 1, . . . , N . If

this assumption holds, any potential selection bias vanishes.
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The second important assumption is the so called overlap condition, which says

that all characteristics observed in a treatment group have to be found amongst the

individuals in the control group,

P(Ai = a |Xi = x) > η

for all a = 0, 1, . . . , d, almost all x ∈ X and some η > 0 (Abadie and Imbens,

2006). If the overlap condition does not hold, a comparison of the expected potential

outcomes, given those covariates, is not possible. It is generally never guaranteed that

this is possible, but a powerful treatment assignment procedure will make it more

probable. Given these two assumptions hold, observed di�erence in average outcomes

conditional on the observables between the treatment and the control group can be

interpreted as the causal, conditional treatment e�ect.

2.2 A Mean Squared Error Based Minimization Function

The Mean Squared Error of a scalar estimator τ̂ conditional on X is de�ned as

MSE(τ̂ |X) = E
[
(τ̂ − τ)2 |X

]
,

where τ is the real-valued parameter to be estimated. The MSE can be decomposed

into the variance and bias of the estimator, conditional on X, and thus results in a

measure of e�ciency for unbiased estimators, given a speci�c set of data X.

More generally, let T a (random) matrix, T̂ an estimator for T and let w =

(w1, . . . , wm) and v = (v1, . . . , vd) be non-negative vectors of weight that are not

identically 0. Then, for the matrix of weighted estimators diag(
√
v)T̂ diag(

√
w), we

de�ne the conditional weighted MSE component-wise as

MSE(T̂ , v, w |X) = E
[∥∥∥diag(

√
v)(T̂ − T ) diag(

√
w)
∥∥∥2
F
|X
]
, (1)
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where ‖ · ‖F denotes the Frobenius norm. We assume v and w do not depend on T .

The expectation of the squared Frobenius norm of the matrix T̂ −T with its cor-

responding weights is because of linearity the trace of the expected squared weighted

error matrix:

MSE(T̂ , v, w |X)

= E
[
tr
(

diag(
√
w)(T̂ − T )> diag(v)(T̂ − T ) diag(

√
w)
)
|X
]

= tr
(

diag(
√
w)E

[
(T̂ − T )> diag(v)(T̂ − T ) |X

]
diag(

√
w)
)
.

Let now T = (τak (X))a=1,...,d;k=1,...m so that w and v weight outcomes and treat-

ments, respectively. The objective is to minimize the weighted MSE (1) given the

weights v and w:

S(T̂ ) = MSE(T̂ , v, w |X) = min
T̂

!.

As the conditional average treatment e�ect is a function of the covariates let

T̂ = f(X) for some function f . As the weights w and v do not depend on T̂ ,

S(T̂ ) is a linear function of the diagonal elements of E
[
(f(X)− T )>(f(X)− T ) |X

]
.

The minimizer of a summand of a diagonal element, (f(X) − T )2a,k say, is given by

the conditional expectation of Ta,k given X, hence S(T̂ ) is minimized by setting

f(X) = E(T |X). With that,

E[T |X] ∈ argmin
T̂

S(T̂ ).

Considering the a-th row of the matrix E[T |X] and using the de�nition of the

Conditional Average Treatment E�ect, see De�nition 1, yields

E[τa(X) |X] = E

[
1

N

N∑
i=1

E
[
Y p,a
i − Y p,0

i |Xi

]
|X

]
=

1

N

N∑
i=1

E
[
Y p,a
i − Y p,0

i |Xi

]
.

This, however, leaves us with the challenge of estimating E [Y p,a
i |Xi] for all treat-

ment groups a = 0, 1, . . . , d.
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2.3 A Linear Model for Potential Outcomes

We choose a linear model for the relationship between covariates and potential out-

comes, i.e.,

Y p,a
i,k = X>i β

a
k + εai,k (2)

for i = 1, . . . , N , k = 1, . . . ,m and a = 0, 1, . . . , d with

Y p,a
i,k a random number taking values in R,

Xi a random vector of length r with values in R and positive variance,

βak the vector of deterministic parameters of dimension r and

εai,k a real-valued random number.

We assume that the ((Y p,a
i,k )a=1,...,d;k=1,...,m;Xi) are independent and identically

distributed for all i = 1, . . . , N . For the error terms, we assume εai,k |Xi ∼ N (0, σ2
ak)

for all i = 1, . . . , N and all k = 1, . . . ,m, a = 0, 1, . . . , d. Moreover, we assume in-

dependence between εai,k and ε0i,k for i = 1, . . . , N, k = 1, . . . ,m and a = 1, . . . , d.

The variances are expressed in relation to a base variance: σ2
ak = sakσ

2
0k for all

a = 0, 1, . . . , d, k = 1, . . . ,m with sak > 0 and σ2
0k = s0kσ

2
0 with s0k > 0 for all

k = 1, . . . ,m and for some σ2
0 > 0.

The objective function S can be expressed in terms of the weights and the

submatrix XI(a) of covariate vectors of all individuals in treatment group a. Let

X̄ = N−1
∑

iXi and denote by C− the Moore-Penrose inverse of a matrix C and by

id the identity.

Theorem 1. Under Assumption 2, the minimization criterion (1) equals

X̄>

[
‖w̃‖1 ‖v‖1

(
XI(0)X

>
I(0)

)−
+
∑
k

w̃k
∑
a>0

ṽak
(
XI(a)X

>
I(a)

)−]
X̄

+
∑
a>0

va
∑
k

wk(X̄
>((id−Ha)β

a
k − (id−H0)β

0
k))

2, (3)
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where ‖ · ‖1 is the l1 norm of a vector, w̃k = wks
0
k and ṽak = vas

a
k for k = 1, . . . ,m,

a = 1, . . . , d, and Ha = (XI(a)X
>
I(a))

−XI(a)X
>
I(a).

The proof of all theorems and propositions can be found in Appendix A.

Since, in general, the βak are unknown and since the �rst summand of (3) tends to

zero as N →∞ for any reasonable choice of assignment, see Lemma 1, the condition

Ha = id, for all a ≥ 0 and N large enough (4)

must hold. Of course, knowledge about the βαk may lead to Ha 6= id, even for large

N .

Corollary 1. Let the condition of Theorem 1 and N large enough so that (4) holds.

Assume that variances for all outcomes and treatment groups are the same, including

the control group (i.e. sak = 1 for all a = 0, 1, . . . , d and all k = 1, . . . ,m) and that all

weights are 1. Then, minimizing (1) through choice of A is equivalent to minimizing

X̄>

[
d
(
XI(0)X

>
I(0)

)−1
+
∑
a>0

(
XI(a)X

>
I(a)

)−1]
X̄. (5)

Proposition 1. Let the conditions of Corollary 1 Assume that the Xij have compact

support (sollte auch schwaecher gehen, ist aber ausreichend fuer Praxis). Then, for

N large enough, the optimization problem (13) is invariant under a transformation

of the vector (Xj,1, . . . , Xj,N) 7→ (cXj,1, . . . , cXj,N) for any c 6= 0 and for any j =

1, . . . , r.

2.4 Balanced Treatment Groups

Proposition 2. Assume that
∑

j |EXj1| > 0, and Mα,j = E|Xj1|2+α ∈ (0,∞) for

all j and some α > 0. Assume that Xj,1 and Xl,1 are uncorrelated for j, l = 1, . . . , r,
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k 6= j. Furthermore, assume that all covariates have the same mean, i.e. EXj,1 = c

for some c 6= 0. Then, for N →∞, a solution to the minimization problem according

to Corollary 1 is obtained, if

d

∑
b≥0
√
cb

√
c0

s0
1 + s0

+
∑
a>0

∑
b≥0
√
cb

√
ca

sa
1 + sa

(6)

where sa =
∑r

j=1 η̂
2
j/v̂j,I(a) and η̂2j is the sample mean, and v̂j,I(a) are the sample

variance of the {Xj,i : i ∈ I(a)}.

is minimized.

If d = 1 and under the conditions of Proposition 2 the value
∑

j,a

(∑
i∈I(a)X

2
j,i

)−
must be minimized. That is, for each i, the square deviation from 0 must be balanced

for all covariates across groups. In the simple case of equally sized groups, this is

equivalent to balancing the variance of each of the covariates. This makes the min

MSE procedure a unique method in the sense that balance incorporates not just

the mean, but a higher moment of the distribution of covariates. It is exactly this

property that makes the groups comparable in the sense that the di�erent subgroups�

if any�are to be found in all experimental groups.

Without the restricting assumptions of Proposition 2 we get a partial answer.

Proposition 3. Under the conditions of Corollary 1, the diagonal elements of the

matrix
(
XI(0)X

>
I(0)

)−
+
(
XI(a)X

>
I(a)

)−
in (13) are given by

Var(β̂ak,j − β̂0
k,j |X) = ck

∑
b∈{0,a}

1

(1−R2
b,k,j)

∑nb

i=1(XI(b),j,i −XI(b),j)2

for any a ≥ 1, j ∈ {1, . . . , r}, k = {1, . . . ,m}, and some ck > 0. The value of the

j-th covariate of individual i in treatment group a is denoted by XI(a)j,i and XI(a)j

denotes the mean. R2
a,k,j is the coe�cient of determination of a regression between
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the variable XI(a),j as response and all XI(a),p for p = 1, . . . , r, p 6= j as explanatory

variables, and for all a = 0, 1, . . . , d. The number of individuals in treatment group

a and in the control group is denoted by na and n0, respectively.

The sum on the right-hand side of (7) is decreased for every a ≥ 1 and every

covariate j = 1, . . . , r, if the linear dependencies between covariates within groups

are decreased. Thus by having this criterion in the objective formula, we reward a

grouping that avoids multicollinearity and punish a high level of similarity amongst

the combination of covariates in a group. This characteristic is also inherent in

matching: Two very similar subjects should not be allocated to the same group. This

characteristic alsp distinguishes the min MSE procedure from other rerandomization

methods, as it considers the complete composition of covariate values in a group

instead of considering all covariates independently. Note, however, that this grouping

might not minimize o�-diagonal entries of the sum of the covariance matrices.

The second part in�uencing (7) is the within-group variance of variable xj around

its mean. The higher its value, the lower the variance of β̂. An overall decrease of

the latter variance can only be achieved if an increase of the variance of xj in one

group does not lower the variance in the other groups to the same extent or more.

2.5 The Relation to the Classical Approach of Optimal Ex-

perimental Design

In what follows, we establish the link to the literature on experimental design.

Starting with Smith (1918), the goal has also been the minimization of the variance

of an estimator θ under a certain criterion. The task in optimal design is usually

a version of the following: For a set X of N measurement points called the design

region, choose the multiplicity li of measurements at the measurement points Xi such
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that the precision of the outcome to be estimated is maximized. This choice is called

design and it can be represented as a collection of variables

ζ =

X1 X2 · · · XN

p1 p2 · · · pN ,

 (7)

where
∑

i pi = 1, piL ∈ N ∪ {0} and L =
∑

i li. As such, ζ is a discrete probability

measure de�ned on the design space X. Then, ζ is chosen such that Φ(Var θ̂(ζ))

is minimized for a suitable optimality criterion Φ (Kiefer, 1959; Fedorov and Hackl,

1997). In case a linear combination c>θ of the estimator of interest for some c ∈

Rr, c-optimality should be considered (Fedorov and Hackl, 1997) as criterion, i.e.,

Φ(Var θ̂(ζ)) = c>Var θ̂(ζ)c.

Proposition 4. Assume d = m = 1. Then, under the conditions of Corollary 1, the

min MSE minimization criterion coincides with the c-optimality criterion.

2.6 Comparison to Alternatives Methods

2.6.1 Pair-Wise Matching

Consider a treatment assignment for a treatment and a control group, where for

every individual i, one covariate xi is observed and the treatment should be assigned

such that this covariate is balanced across the treatment and control groups.

Theorem 2. Pair-wise matching before treatment assignment is a max-min approach

for the sum of the variances.

In essence, this theorem shows that also matching aims at balancing a higher

moment of the covariate distribution than the mean, as does the min MSE approach.

Basically, it ensures that the most similar observations are assigned to di�erent

groups.
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2.6.2 First Moment Optimizers

The criteria considered by Greevy et al. (2004) to compare the e�ciency of treatment

assignment could also be used as an optimization criterion for treatment assignment.

For every treatment a, a linear, additive model is speci�ed as follows:

YI(a) =
[
ZI(a) XI(a)

]τa
βa

+ ε,

where ZI(a) gives the treatment status, i.e., ZI(a)i = 1i∈I(a) for those in treatment

group a and ZI(0)i = −1i∈I(0) for the control group. In particular, the treatment

e�ect is assumed to be constant across individuals, so potential outcomes of the

control group and the treatment group of interest are assumed to di�er only by a

constant.

Under the Gauss-Markov assumptions, i.e. additive errors that are uncorrelated

conditional on XI(a) with constant variance σ2, the MSE of the estimated treatment

e�ect is proportional to (ZI(a)
>PaZI(a))

−1 with Pa = id−XI(a)

(
X>I(a)XI(a)

)−1
X>I(a)

and is minimized for X>I(a)ZI(a) = 0 (Greevy et al., 2004). Thus, with the assumption

of constant variances across treatments and constant weights, an alternative objective

function for minimization would be

S∗(T̂ ) ∝
∑
a

(ZI(a)
>PaZI(a))

−1. (8)

In contrast to simple di�erences of mean estimators for the average treatment

e�ect, here covariates are controlled for. The induces criterion of balance for co-

variates is minimized by X>I(a)ZI(a) = 0, i.e., it is enough to have equal mean values

of a covariate to minimize this criterion (given equal group sizes), independent of

the distribution in the respective groups. Also the approach by Morgan and Rubin

(2012) leads to a solution with similar properties. By way of contrast, Section 2.3
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shows that if there is reason to assume that any of the treatment e�ects might di�er

across individuals and be a function of the covariates, it is necessary to focus on more

distributional characteristics of the covariates than their means.

3 Application in Two Case Studies

We illustrate the applicability and the bene�ts of our method with two case studies.

Two research teams applied the minMSE method for treatment assignment in two

scenarios in which the method is particularly suited: Cluster-randomized settings

and settings with several treatment arms. In the �rst setting, we focus on the

impact of attrition on pre-treatment covariate balance and on the ability to detect

signi�cant treatment e�ects. In the second setting, we show how balance varies as,

for a constant sample, the number of treatment groups increases. Riener et al. (2021)

experimentally investigate how balance a�ects precision in a similar setting, using

the minMSE method. For the standard case of one control and one treatment group,

we have also run simulations on �ve di�erent datasets in the spirit of Bruhn and

McKenzie (2009). These results are not reported here in the interest of brevity, but

are available from the authors. They show that our method performs superior to all

alternatives but the optimal matching approach, to which it performs comparable.

3.1 Study 1: Cluster Randomized Health Intervention

The goal of the intervention study in Indonesia was to introduce and assess the

e�ectiveness of the World Health Organisation's Safe Childbirth Checklist in Aceh

Province in Indonesia by use of a Randomized Controlled Trial (Diba et al., 2020).

Outcomes of interest were the maternal and neonatal mortality rate and the stillbirth

rate. The study shows that neonatal mortality rate and the stillbirth could both be
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signi�cantly lowered (α = 10%) at the birth level in hospitals applying the Safe

Childbirth Checklist.

Treatment assignment was conducted at the health facility level (using a phase-

in design) for ethical and practical reasons. Strati�cation was discarded, as more

than a handful of variables were identi�ed that were likely to in�uence the outcome

and should hence be balanced across treatment groups, such as the cluster size as

expressed in yearly delieveries, the location (district and rural/urban) or the ca-

pabilities of a facility (e.g. blood transfusion), and moreover, some of them were

continuous, such as the yearly number of delieveries of a hospital.

Pair-wise matching is a common solution in that case. However, the 32 health

facilities di�ered considerably in the number of yearly deliveries: In the year prior

to the study, this number ranged from 5 to 3220 with a mean of about 360 and a

median of 85. The number of delieveries in the largest hospital amounted to roughly

30% of all delieveries in the year prior to the intervention, and, together with its

most likely paired facility, even to about 40% of delieveries. Thus, attrition was

of major concern, and in particular that one of the large units could have dropped

out of the study between treatment assignment and �nal measurements. Pair-wise

matching would have caused another large unit to be taken out of the study in such

a situation. For this reason, the research team opted for the minMSE method as an

attrition tolerant option for treatment assignment.

We illustrate the impact of attrition on balance and the power to detect signi�cant

treatment e�ects by contrasting pair-wise matching and the minMSE method. For

the pair-wise matching approach, we picked the `greedy' approach by Imai et al.

(2009a) in the R package experiment as well as the optimal matching algorithm

going back to Greevy et al. (2004), and used the implementation in the R package

of Lu et al. (2011). For the minMSE approach we used our own Stata ado-package
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(Schneider, 2021), with 300 iterations for actual treatment implementation, and our

own R package minMSE (Schneider and Baldini, 2021) for the simulation study.

Attrition and Balance of Experimental Groups Before Treatment To

study the e�ect of attrition on balance, we produce 1000 treatment assignment vec-

tors either purely at random, with the minMSE method or with the two pair-wise

matching approaches. For treatment assignment, we consider a set of seven categor-

ical or continous pre-treatment variables containing information on the cluster size,

the location, the type (private or public) and the capabilities of a facility. For each

treatment assignment vector and each of these variables, we assess balance by the

di�erence in a variable's mean values in the two assigned treatment groups, expressed

in standard deviations.

Dropouts are simulated: For one and two facilities, this is done exhaustively by

dropping every facility and every possible combination of two facilities once. For

more than two facilities, 10000 combinations of facilities are randomly sampled. For

every dropout or combination of dropout, we consider the 95% quantile of group

di�erences across the seven variables and the 1000 treatment assignments. For every

number of dropout facilities, these are averaged over the dropouts. Importantly,

when treatment assignment is conducted with a pair-wise matching approach, we

also remove the pair of a dropout from the sample, according to common praxis.

The results con�rm the hypothesis that taking out the pair of a dropped out

facility allow a relatively stable degree of balance for the matching approaches: The

95% quantile of di�erences in group means is about .4 and .56 for the optimal and

the greedy matching approach, respectively, without attrition and it increases only

very moderate to an average of about .5 and .66, thus increases, on average, only

by .02 standard deviations per dropped facility. The increase in imbalance with the

minMSE approach is about twice as large. However, as it starts with a 95% quantile
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Figure 1: The e�ect of attrition on imbalance (di�erences in group means)

of di�erences in group means of only about .13 SD and increases to .33, the increase

is not a threat to balance, as even with �ve facilites dropping out, balance is still

better than with the matching approaches without any attrition; see Figure 1.

Attrition and the Ability to Detect Treatment E�ects Actual treatment

assignment was performed by the minMSE method. However, when building pairs

of health facilties with the optimal matching approach, the two facilities in each pair

were � by the minMSE approach � always assigned to di�erent treatment groups,

except for two of the pairs. In other words, for a subsample excluding these two pairs,

the actual treatment assignment could have been a realisation of both, treatment

assignment using optimal pair-wise matching or the minMSE method. To be able

to use actual treatment e�ects instead of simulated or predicted ones, we focus on

this subsample in this case study. We do so to abstract from issues of pre-treatment

balance that otherwise might di�er in realizations of the two methods, and to avoid

predicting potential outcomes based on rather few data and/or strong assumptions.
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For estimation of treatment e�ects in matched-pair and unmatched cluster-randomized

experiments, we use the same estimators as in Imai et al. (2009a):

θ̂ =
2

N

N∑
i=1

Y p
i,1Di − (1−Di)Y

p
i,0 (9)

is used as an unbiased estimator for the sample average treatment e�ect for the

unmatched design, i.e. when assigning treatment with the minMSE method.For the

matched-pair design, we denote the number of units in the ith cluster of the kth pair

with nik, where i = 1, 2 and k = 1, . . . ,m. Zk is the treatment status for the �rst

cluster of the kth pair, i.e. for Zk = 1 we have D1k = 1 and D2k = 0 and de�ne

κ̂ =
1∑m

k=1wk

m∑
k=1

wk

{
Zk

(∑n1k

i=1 Yi1k
n1k

−
∑n2k

i=1 Yi2k
n2k

)
+ (1− Zk)

(∑n2k

i=1 Yi2k
n2k

−
∑n1k

i=1 Yi1k
n1k

)}
, (10)

where, following Imai et al. (2009a), for wk we used either harmonic means of the

cluster sizes within a pair, wk = ni1kni2k/(ni1k+ni2k) or just ni1k+ni2k, i.e., their total

size. We focus on these design-based, model-free estimators for their simplicity, and

to abstract from model misspeci�cations, particularly so with our small sample. See

Freedman (2008), Lin (2013) and Imai et al. (2009b) for discussion of the otherwise

possible complications in our setting.

To keep the method of inference comparable for both methods of treatment as-

signment, to refrain from distributional assumptions that may or may not hold in

small samples, and to abstract from complications and controversies when estimating

the variance and the standard error of the treatment e�ect resulting from a matching

design (see, e.g. Imbens, 2011; Abadie and Imbens, 2006; Klar and Donner, 1997;

Imai et al., 2009a, on this topic), we compute p-values using randomization inference.

We follow the recommendations by Morgan and Rubin (2012), and create alternative

treatment assignment vectors that could have arisen from the treatment assignment
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method. For the minMSE method, these are all treatment assignments that result

from 300 iterations of the algorithm using the same covariates that were used for the

original treatment assignment. Similarly, for the pair-wise matching approach, we

randomize within pairs as established from the non-stochastic matching algorithm

(Greevy et al., 2004; Lu et al., 2011). Then, the p-value is the proportion of alterna-

tive treatment assignment vectors with corresponding estimated treatment e�ect as

extreme or more extreme than the actually observed treatment e�ect resulting from

the actual treatment assignment.

Attrition actually happened during the intervention and one hospital had to close

before the end of the study. Naturally, however, we cannot assess the e�ect of this

hospital dropping out of the study on the ability to detect a signi�cant treatment

e�ect. Therefore, we simulate attrition, and compare the signi�cance of the estima-

tors (9) and (10) with randomization inference and one to �ve health facilities taken

out of the sample. For the matching-pair cluster randomized design estimator (10),

we also remove the paired health facility from the sample. Just as before, we simu-

lated attrition exhaustively for the �rst two hospitals to drop out with every possible

combination of two hospitals. For simulating attrition with three to �ve facilities, we

sampled 10,000 combinations of health facilities, take them, and, if applicable, their

pair out of the sample, estimate the treatment e�ect and assess its signi�cance.

Attrition and the Ability to Detect Treatment E�ects Without attrition,

both estimators perform comparable in the sense that a signi�cant treatment e�ect

can be detected in both outcome variables of interest that we considered: the neonatal

death rate, and the stillbirth rate. The minMSE method and the associated estimator

demonstrate a higher ability to detect signi�cant treatment e�ects at all levels of

attrition compared to the matching approach and the associated estimators. While

the di�erence is moderate for one hospital dropping out of the sample (signi�cance in
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Figure 2: The e�ect of attrition on the ability to detect treatment e�ects

one variable in one case of the 26 possibilities of dropping a �rst facility), it becomes

larger in case two hospitals are missing in the endline: In 167 comparisons, or 13% of

all performed estimations when iteratively dropping all possible combinations of two

hospitals, no signi�cant di�erence between treatment and control in the considered

variables can be detected after using the matching approach, while this is still possible

if using the minMSE approach. For higher levels of attrition, the results are similar,

as apparent from Figure 2. It should be noted, of course, that these results are partly

due to the small sample size and the rather low baseline variance. Yet, exactly in

these settings, treatment assignment matters, and might make a di�erence.

3.2 Study 2: Experiment with Multiple Treatments

The minMSE method has also been used in a social science experiment where partic-

ipants need to be assigned to one of three treatments. The main goal of the study is

to understand the underpinnings of e�ort provision among pupils (Ba²i¢ et al., 2021).
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The primary outcome is the e�ort level as measured by the number of successfully

solved tasks in a counting exercise. The authors test the e�ect of each treatment in

improving this primary outcome. In this case study we illustrate the advantages of

the minMSE method in this setting, using data from pilot sessions (N = 102; data

collection for the main study is still ongoing).

Treatment is assigned at the individual level. Strati�cation was discarded as

assignment method, as several � some of them continuous � variables were identi�ed

that were likely to in�uence the outcome. Pair-wise matching is limited to the

situation of only one binary treatment. Therefore, and for the lack of any software

implementation of a (formal) rereandomization method, we compare the minMSE

method with purely random treatment assignment in this setting, again using our

own R package (Schneider and Baldini, 2021).

To study (im)balance of pre-treatment variables, we produce 1000 treatment as-

signment vectors either purely at random or with the minMSE method, assigning

individuals to two to ten experimental groups. For treatment assignment, we con-

sider a set of eight either categorical or continous pre-treatment variables containing

individual information on the pre-treatment e�ort level provided, the IQ, patience,

risk tolerance, age and gender. For each treatment assignment vector and each of

these variables, we assess balance by the average di�erence in a variable's mean value

between the control group and any of the treatment groups, expressed in standard

deviations. For every number of treatment groups to assign, we �nally consider the

95% quantile of average di�erences between control and treatment groups across the

eight variables and the 1000 treatment assignments.

Results show that when assigning treatment groups purely at random, for every

number of treatment groups to assign, imbalance is by between 41 to 120%, or, on

average 56% higher than when conducting treatment assignment with the minMSE

24



Figure 3: Imbalance in pre-treatment information with multiple treatment groups

method. This means that, keeping the size of the sample constant, the minMSE

method can assign �ve more groups than purely random treatment assignment with

about the same level of imbalance; see Figure 3. As the increase in imbalance asso-

ciated with an additional treatment group when assigning more than two groups is

clearly lower with the minMSE method than when assigning treatment groups purely

at random, we can expect this result to hold beyond the results presented here, i.e.

also for six groups (random assignment) vs. eleven (minMSE method), etc.
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Appendix

A Proofs

Proof of Theorem 1. Let Y p,a
I(a),k be the subvector of the observed k-th component

under treatment a and εaI(a),k be the respective subvector of error terms. That is,

equality (2) writes in matrix notation Y p,a
I(a),k = X>I(a)β

a
k + εaI(a),k for any a and k. It

is well-known that the best unbiased estimator β̂ak for β
a
k has the distribution

β̂ak ∼ N (Haβ
a
k , σ

2
ak(XI(a)X

>
I(a))

−1).

and Ŷ p,a
I(a),k is best chosen as Ŷ p,a

I(a),k = X>I(a)β̂
a
k . Hence,

E
[(
τ̂at,k − τak

)2 |X]− (X̄>((id−Ha)β
a
k − (id−H0)β

0
k))

2

= E

( 1

N

∑
i

(
Ŷ p,a
i,k − Ŷ

p,0
i,k

)
− 1

N

∑
i

(
E
[
Y p,a
i,k |Xi

]
− E

[
Y p,0
i,k |Xi

]))2

|X


=

1

N2
E

(∑
i

X>i

((
β̂ak − βak

)
−
(
β̂0
k − β0

k

)))2

|X


=

1

N2

∑
i

X>i

(
Cov

(
β̂ak − βak |X

)
+ Cov

(
β̂0
k − β0

k |X
))∑

i

Xi

= X̄>
(
σ2
ak(XI(a)X

>
I(a))

− + σ2
0k(XI(0)X

>
I(0))

−) X̄,
where we used that the error terms εai,k, a > 0 are i.i.d. and I(a) depends only on X.
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Now denote the l1 norm of a vector by ‖ · ‖1 and summarize weights and scaling

factors for the variance as w̃k = wks
0
k and ṽ

a
k = vaks

a
k. Then, applying the just derived

result to the objective function, the generalized MSE (1), completes the proof:

S(T̂ ) = σ2
0X̄
>

[∑
k

{
wks

0
k

(∑
a

vaks
a
k

(
XI(a)X

>
I(a)

)−
+ ‖v‖1

(
XI(0)X

>
I(0)

)−)}]
X̄

+
∑
a>0

va
∑
k

wk(X̄
>((id−Ha)β

a
k − (id−H0)β

0
k))

2

= σ2
0X̄
>

[
‖w̃‖1 ‖v‖1

(
XI(0)X

>
I(0)

)−
+
∑
k

{
w̃k
∑
a

ṽak
(
XI(a)X

>
I(a)

)−}]
X̄

+
∑
a>0

va
∑
k

wk(X̄
>((id−Ha)β

a
k − (id−H0)β

0
k))

2
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Lemma 1. Assume that
∑

j |EXj1| > 0, and Mα,j = E|Xj1|2+α ∈ (0,∞) for some

α > 0 and all j. Assume further that Xji and Xli are uncorrelated for all j 6= l . Let

(4) hold. Let c0 = ‖w̃‖1 ‖v‖1 and ca =
∑

k w̃kṽ
a
k for a > 0. Let A be any assignment

that is in the limit at least as good with respect to the minimization problem as any

assigment that is independent of X, given (4) holds. Denote by |I(a)| the number of

elements in I(a). Then, N−1|I(a)| → √ca/
∑

b≥0
√
cb for all a ≥ 0 as N →∞ (and

consequently, 1
|I(a)|XI(a)X

>
I(a) → (EXj1Xl,1)j,l=1,...,r).

Proof. Let f(z0, . . . zd) =
∑

a ca/za for za ≥ 0. Under the constraint that
∑
za ≤ 1

the function f takes its in�mum at z0 = (z00 , . . . , z
0
d) = (

√
c0, . . . ,

√
cd)/

∑
a

√
ca. In

particular, z0a ∈ (0,∞) for all a and f is continuous in an environment around z0. Let

η = (EX11, . . . ,EXr1), M = (EXj1Xl1)j,l=1,...,r and ξ = η>M−1η. By assumption the

covariance matrix of (X11, . . . , Xr1) is a strictly positive de�nite matrix and hence

M and M− are strictly positive de�nite matrices and ξ ∈ (0,∞).

Let A be an assignment independent of X, for which N−1|I(a)| → √ca/
∑

b≥0
√
cb

for all a ∈ {0, . . . , d} as N →∞. As |I(a)| → ∞, we have

1

|I(a)|
XI(a)X

>
I(a) → (EXj1Xl1)j,l=1,...,r

and X̄ → (EX11, . . . ,EXr1). Then

lim
N→∞

NS(T0) = lim
N→∞

σ2
0NX̄

>

[
‖w̃‖1 ‖v‖1

(
XI(0)X

>
I(0)

)−
+
∑
k

{
w̃k
∑
a>0

ṽak
(
XI(a)X

>
I(a)

)−}]
X̄,

= σ2
0ξf(z0) ∈ (0,∞). (11)

We stick to the pseudoinverse to see clearer where condition (4) comes in. For ease

of notation we will consider below only the whole sequence, but all considerations

can also be applied to subsequences. Assume now that we have A that is in the limit

at least as good as the assignment above, i.e., (11) yields an upper bound for the

limit behaviour of NS(T ). Then NX̄>
(
XI(a)X

>
I(a)

)−
X̄ is bounded for all a ≥ 0.
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Let

BN :=
1

N
(XI(a)X

>
I(a))jj =

|I(a)|
N

(XI(a)X
>
I(a))jj

|I(a)|
and let Fj be the distribution function of Xj1. Then for u ≥ 1,∫ ∞

{y:|y|≥u}
|x|2Fj(dx) ≤ u−α

∫ ∞
{y:|y|≥u}

|x|2+αFj(dx).

Hence for all u ≥ 0 ∫ ∞
{y:|y|≥u}

|x|2Fj(dx) ≤ min{M0,j, u
−αMα,j}.

Assume thatA∗ assigns to the group a ≥ 0 the largest |I∗(a)| values of |Xj1|, . . . , |XjN |

with |I∗(a)| ≥ |I(a)| and |I∗(a)| → ∞. Let F←j the pseudoinverse of Fj. Then

lim
N→∞

BN ≤ lim
N→∞

(XI∗(a)X
>
I∗(a))jj

N
= lim

N→∞

|I∗(a)|
N

lim
N→∞

(XI∗(a)X
>
I∗(a))jj

|I∗(a)|

≤ min

{
M0,j,

(
lim
N→∞

F←j (1− |I∗(a)|/N)
)−α

Mα,j

}
lim
N→∞

|I∗(a)|
N

. (12)

Hence, the eigenvalues of N−1XI(a)X
>
I(a) are bounded in the limit. Hence the eigen-

values of the (pseudo-)inverse are bounded away from zero in the limit, exept they

had been zero already in the original matrix. Hence, NX̄>
(
XI(a)X

>
I(a)

)−
X̄ can con-

verge to 0 if and only if η is in the kernel of limN→∞ I
−1(a)XI(a)X

>
I(a), since η 6= 0.

Thus, we have a contradiction to (4). If NX̄>
(
XI(a)X

>
I(a)

)−
X̄ does not converge

to zero, then at least for one j the value of BN must be greater than 0 in the limit.

Replacing I∗ by I in (12) we get that I(a) = O(N) and the same argument in (11),

now for the assignment A, shows the assertion of the Lemma.

Proof of Proposition 1. Instead of C = diag(1, . . . , 1, c, 1, . . . , 1) we consider an ar-

bitrary r × r matrix C that is invertible. Let W = CX and I a non-empty subset

{1, . . . , N}. Then

W̄>(WIW
>
I )−1W̄ = X̄>C>(CXIX

>
I C

>)−1CX̄ = X̄>(XIX
>
I )−1X̄.

29



Lemma 2. Let η ∈ Rr and v1, . . . , vr > 0. Then

η>(ηη> + diag(v1, . . . , vr))
−1η =

s

1 + s
with s =

r∑
j=1

η2j/vj

Proof. If η = 0 then the assertion is correct. Otherwise, assume without loss of

generality that ηr 6= 0. Let x = η>(ηη> + diag(v1, . . . , vr))
−1η. Then

x = η>u with (ηη> + diag(v1, . . . , vr))u = η.

Then u solves 

v1 0 . . . 0 −vrη1/ηr
0

. . . . . .
...

...
...

. . . . . . 0
...

0 . . . 0 vr−1 −vrηr−1/ηr
ηrη1 ηrη2 . . . ηrηr−1 vr + η2r


u =



0
...
...

0

ηr


Hence the jth component of u equals uj = ηjv

−1
j (1 +

∑r
l=1 v

−1
l η2l )

−1.

Proof of Proposition 2. Lemma 1 shows that

|I(a)|
N

1

|I(a)|
XI(a)X

>
I(a) →

√
ca/
∑
b≥0

√
cb(EXj,1Xl,1)j,l=1,...,r (N →∞) for all a ≥ 0

Let η = E(X1,1, . . . , Xr,1) and vj = Var(Xj,1). Then Lemma 2 yields that

NX̄>

[
d
(
XI(0)X

>
I(0)

)−1
+
∑
a>0

(
XI(a)X

>
I(a)

)−1]
X̄ → dc

−1/2
0

∑
b≥0

√
cb

s

1 + s
+
∑
a>0

c−1/2a

∑
b≥0

√
cb

s

1 + s

(13)
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where s =
∑r

j=1 η
2
j/vj. A �nite approximation of the right hand side of (13) is

d

∑
b≥0
√
cb

√
c0

s0
1 + s0

+
∑
a>0

∑
b≥0
√
cb

√
ca

sa
1 + sa

(14)

where sa =
∑r

j=1 η̂
2
j/v̂j,I(a) and η̂2j is the sample mean, and v̂j,I(a) are the sample

variance of the {Xj,i : i ∈ I(a)}.

Proof of Proposition 3. It is known that the diagonal elements of the covariance ma-

trix of the estimator for the parameter vector in linear regression models such as (2)

are given by

Var(β̂ak,j |X) =
σ2
ak

(1−R2
a,k,j)

∑n
i=1(XI(a)j,i −XI(a)j)2

,

for j = 1, . . . , r, with notations as in Proposition 3 (see e.g. Wooldridge, 2014).

As in the proof of Theorem 1, the covariance matrix of β̂ak−β̂0
k for any a = 1, . . . , d

and any k = 1, . . . ,m is given by

(
XI(a)X

>
I(a)

)−1
+
(
XI(0)X

>
I(0)

)−1
,

the claim follows, noting that we assume equal variances in Corollary 1.

Proof of Proposition 4. This criterion, which aims at minimizing Var c>θ, i.e. arg minζ Φ(C−1ζ ) =

arg minζ c
>C−1ζ c, C = XX> is the so-called information matrix. In case of our linear

model 2 C−1ζ of θ̂(ζ) is minimized. Since C−1ζ is a matrix, the optimization problem

arg min
ζ

Φ(C−1ζ ),

is considered is a special case of the min MSE Treatment Assignment procedure, as

the following proposition shows.
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Assume d = 1 and m = 1. We start by noting that we can write the equations

that we need to solve in order to estimate the linear model (2) in one single equation

system (without loss of generality assumed to be in block-diagonal form):Y p,0
I(0)

Y p,1
I(1)

 =

X>I(0) 0

0 X>I(1)

 θ, (15)

where θ =

β0

β1

 and Y pa
I(a), XI(a), β

a for a ∈ {0, 1} are vectors and matrices as

de�ned in the proof of Theorem 1. Recall that�with only one treatment group�we

are interested in minimizing E[(τ̂a − τ)2 |X] = Var[τ̂a |X]. Now

τ̂a =
1

N

N∑
i=1

X>i (β̂1
p − β̂0

p) = c>θ̂

for c = ( 1
N

∑N
i=1X

>
i , − 1

N

∑N
i=1X

>
i )>. Finally,

Var[c>θ̂ |X] = c>C−1ζ c (16)

= σ2 1

N

N∑
i=1

X>i
(
(XI(0)X

>
I(0))

−1 + (X1X
>
1 )−1

) 1

N

N∑
i=1

Xi, (17)

with Cζ = σ−2


XI(0) 0

0 X1

XI(0) 0

0 X1

>
, where, in our case,

ζ =

z1,0 z1,1 z2,0 · · · zN,1

p1,0 p1,1 p2,0 · · · pN,1

 (18)

with
∑

i,j pi,j = 1, pi,j ∈ {1/N, 0}, pi,0 + pi,1 = 1/N , z>i,0 = (X>i , 0, . . . , 0) and

z>i,1 = (0, . . . , 0, X>i ) for all i.

Proof of Theorem 2. We use mi,j = mj,i = 1 to indicate individual i is matched

to individual j, and 0 otherwise. Every individual is matched exactly once, so

32



∑
i,jmi,j = N . Usually, the goal is to minimize

∑
i,jmi,j(yi − yj)

2 through the

choice of mi,j, although sometimes the absolute di�erence is also used (Rubin, 1973).

For being a special case of the squared Mahalanobis distance, we prefer the squared

euclidean distance. The set of solutions to this optimization problem is given by

arg min
(mi,j)i<j

∑
i,j

mi,j(y
2
i + y2j − 2yiyj) = arg max

(mi,j)i<j

∑
i,j

mi,jyiyj.

We now show that elements of this set maximize the minimal sum of the variances

of the groups to be created. This sum of variances is given by

2

N

∑
i∈I(0)

y2i − ȳ20 +
2

N

∑
j∈I(1)

y2j − ȳ21 =
2

N
=
∑
i

y2i − ȳ20 − ȳ21. (19)

Since

yI(a)
2 =

4

N2

∑
i∈I(a)

y2i +
∑
i∈I(a)

∑
j∈I(a),j 6=i

yiyj


for a = 0, 1, (19) can be rewritten as(

2

N
− 4

N2

)∑
i

y2i −
4

N2

∑
i∈I(0)

∑
j∈I(0),j 6=i

yiyj +
∑
i∈I(1)

∑
j∈I(1),j 6=i

yiyj

 .

The �rst summand is independent of group or treatment assignment. We rewrite the

elements of the subtrahend as∑
i∈I(0)

∑
j∈I(0),j 6=i}

yiyj +
∑
i∈I(1)

∑
j∈I(1),j 6=i

yiyj (20)

=
∑
i

∑
j

yiyj −
∑
i

y2i − 2
∑
i∈I(0)

∑
j∈I(1)

yiyj (21)

=
∑
i

∑
j

yiyj −
∑
i

y2i − 2
∑
i∈I(0)

∑
j∈I(1)

mi,jyiyj − 2
∑
i∈I(0)

∑
j∈I(1)

(1−mi,j)yiyj, (22)

where we have split the cross product between group observations into those that are

matched and those that are unmatched. The �rst two parts are again independent of
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group or treatment assignment, and so is the third for a �xed m. Thus, by matching

we have maximized the sum of group variances across feasible treatment assignments.

In other words, the sum of group variances resulting from the worst treatment as-

signment in this aspect from the set of possible treatment group assignments after

matching {A : Ai = |Aj − 1| for m̂i,j = 1, m̂ ∈ arg max(mi,j)

∑
i

∑
jmi,jxixj} is still

maximized over m.
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